多年来,使用单点监督的对象检测受到了越来越多的关注。在本文中,我们将如此巨大的性能差距归因于产生高质量的提案袋的失败,这对于多个实例学习至关重要(MIL)。为了解决这个问题,我们引入了现成建议方法(OTSP)方法的轻量级替代方案,从而创建点对点网络(P2BNET),该网络可以通过在中生成建议袋来构建一个互平衡的提案袋一种锚点。通过充分研究准确的位置信息,P2BNET进一步构建了一个实例级袋,避免了多个物体的混合物。最后,以级联方式进行的粗到精细政策用于改善提案和地面真相(GT)之间的IOU。从这些策略中受益,P2BNET能够生产出高质量的实例级袋以进行对象检测。相对于MS可可数据集中的先前最佳PSOD方法,P2BNET将平均平均精度(AP)提高了50%以上。它还证明了弥合监督和边界盒监督检测器之间的性能差距的巨大潜力。该代码将在github.com/ucas-vg/p2bnet上发布。
translated by 谷歌翻译
使用现代智能手机摄像机的夜成像由于光子计数低和成像系统中不可避免的噪声而变得麻烦。直接调整曝光时间和ISO等级在弱光条件下无法同时获得锋利和无噪声图像。尽管已经提出了许多方法来增强嘈杂或模糊的夜晚图像,但由于两个主要原因,它们在现实世界中的照片仍然不令人满意:1)单个图像中的信息有限和2)合成训练图像和真实图像之间的域间隙 - 世界照片(例如,模糊区域和分辨率的差异)。为了利用连续的长期和短曝光图像中的信息,我们提出了一条基于学习的管道来融合它们。开发了D2HNET框架,以通过在短期曝光图像的指导下脱毛和增强长期暴露图像来恢复高质量的图像。为了缩小域间隙,我们利用了两相deblernet-enhancenet架构,该体系结构在固定的低分辨率上执行准确的模糊去除,以便能够在不同的分辨率输入中处理大范围模糊。此外,我们从HD视频中合成了D2数据,并在其上进行了实验。验证集和真实照片的结果表明,我们的方法获得了更好的视觉质量和最先进的定量分数。可以在https://github.com/zhaoyuzhi/d2hnet上找到D2HNET代码,模型和D2-DATASET。
translated by 谷歌翻译
深度学习的快速发展在分割方面取得了长足的进步,这是计算机视觉的基本任务之一。但是,当前的细分算法主要取决于像素级注释的可用性,这些注释通常昂贵,乏味且费力。为了减轻这一负担,过去几年见证了越来越多的关注,以建立标签高效,深度学习的细分算法。本文对标签有效的细分方法进行了全面的审查。为此,我们首先根据不同类型的弱标签提供的监督(包括没有监督,粗略监督,不完整的监督和嘈杂的监督和嘈杂的监督),首先开发出一种分类法来组织这些方法,并通过细分类型(包括语义细分)补充,实例分割和全景分割)。接下来,我们从统一的角度总结了现有的标签有效的细分方法,该方法讨论了一个重要的问题:如何弥合弱监督和密集预测之间的差距 - 当前的方法主要基于启发式先导,例如交叉像素相似性,跨标签约束,跨视图一致性,跨图像关系等。最后,我们分享了对标签有效深层细分的未来研究方向的看法。
translated by 谷歌翻译
复杂的系统在现实世界中无处不在,并且往往具有复杂且理解不足的动态。对于他们的控制问题,挑战是保证在这种肿的和陷入困境的环境中的准确性,鲁棒性和概括。幸运的是,复杂的系统可以分为人类认知似乎可以利用的多个模块化结构。受到一种新型控制方法的启发,提出了一种新颖的控制方法,是一种因果关系机制(CCMS),它提出了探索组合分裂和竞争的合作。我们的方法采用了层次强化学习理论(HRL),其中1)具有竞争意识的高级政策将整个复杂系统划分为多种功能机制,以及2)低级政策完成了每种机制的控制任务。特别是用于合作的级联控制模块有助于CCM的串联操作,并使用向前耦合的推理模块来恢复分区过程中丢失的耦合信息。在合成系统和现实世界的生物调节系统上,CCM方法即使有不可预测的随机噪声,CCM方法也可以达到稳健和最新的控制结果。此外,概括结果表明,重复使用准备的专业CCM有助于在具有不同混杂因素和动态的环境中表现良好。
translated by 谷歌翻译
边界盒注释表单是可视对象本地化任务最常用的方法。然而,边界盒注释依赖于大量的精确注释的边界盒,这是昂贵的,艰苦的,因此在实际情况下是不可能的,对于某些应用而言,关心尺寸的一些应用甚至是多余的。因此,我们通过将每个人作为粗略点(COARSOPPOINT)向每个人提供注释来提出一种基于点的基于点的框架,该框架可以是对象范围内的任何点,而不是精确的边界框。然后将该人的位置预测为图像中的2D坐标。大大简化了数据注释管道。然而,COARSOUNTPOINT注释不可避免地导致标签可靠性降低(标签不确定性)和训练期间的网络混淆。因此,我们提出了一种点自我细化方法,它以自重节奏的方式迭代地更新点注释。拟议的细化系统减轻了标签不确定性,逐步提高了本地化绩效。实验表明,我们的方法可实现对象本地化性能,同时保存注释成本高达80 $ \%$。代码括在补充材料中。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译